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1.0 SUMMARY

A metallurgical evaluation of the factors influencing the ductility of T- l11 (Ta-8W-2Hf)
alloy after long-time elevated temperature exposures was performed. Gas tungsten-arc (GTA)

sheet welds aged in ultra-high vacuum and tubing material exposed to lithium on the inside dia-

meter and vacuum environments on the outside were evaluated. Exposure conditions included times

to 10,000 hours in the temperature range 9820 C(18000°F) through 13160 C(24000 F). The effect of

1 hr. -1982°C(3600 0 F) post-age annealing was also considered. Following low temperature frac-

ture, specimens were characterized and examined by means of scanning and transmission electron

microscopy, Auger electron emission spectroscopy and optical metallographic procedures.

Previous investigations of the bend ductility of aged GTA welds and alkali metal-exposed

T-111 tubing had suggested the possibility of significant ductility impairment following long-

time exposures in the temperature range 9820 C(18000 F) through 11490C(21000 F). Premature

intergranular failures were noted to occur as high as -180 C(0°F) whereas unexposed T-l11

typically displays full bend behavior to -1960 C(-3200 F). Certain results of the prior studies

had suggested the possibility a classical aging reaction might be occurring in the weld fusion

zones.

Scanning electron microscopy studies proved invaluable for the characterization of the

fracture surfaces, permitting definitive interpretation of the various fracture morphologies.

Transmission electron microscopy was used to characterize dislocation structure and to deter-

mine the extent and possible role of precipitation on the behavior of the aged alloy. Freshly

fractured surfaces were examined for the presence of segregation at the fracture surface by

means of Auger electron emission spectroscopy.

The experimental evaluations reveal no "problem" temperature range exists which must

be avoided for long-time exposures. No evidence was obtained to support the original hypo-

thesis that a solid-state aging reaction was occurring in the weld fusion zones. Of the aged

1



GTA welds evaluated, representing ten different thermal histories, only three specimens

exhibited what may be described as a tendency toward intergranular failure. In each of these

three specimens contamination by silicon, potassium and/or fluorine was detected at the

fusion zone grain boundaries.

The aged tube materials were found to have suffered no loss of ductility due to the high

temperature lithium exposures. Earlier observations of intergranular fracture in the specimen

exposed at 10380 C(19000 F) can be attributed to an enhanced sensitivity to post-age handling

and/or testing. These results are consistent with the results of other workers regarding the sen-

sitivity of aged T-1 11 to post-age handling. The results of this program indicate that T-1 11

can be exposed for long periods at temperatures up to at least 13160 C(24000 F) without loss of

ductility provided care is exercised in subsequent post-age handling operations.
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2.0 INTRODUCTION

This report presents the results of a metallurgical evaluation of the factors affecting

the ductility of the tantalum-base alloy T- 11 (Ta-8W-2Hf) following long-time exposures

at temperatures ranging from 9820 C(18000 F) through 13160 C(24000 F).

Results of bend tests on aged T-1 11 have indicated a propensity toward grain boundary

failure at temperatures as high as -180C(0°Ft ) ih his contrasts with the normal full 1000 bends

obtained at -1960 C(-3200 F) with unaged T-1 11. While primarily associated with GTA sheet

welds, similar behavior has also been observed in room temperature ring flattening tests on

T-111 tubing following exposure in liquid alkali metal systems operated for long times at

10380 C(19000 F). The behavior observed is somewhat different than classical ductile-brittle

transition behavior in body-centered-cubic metals in that the fracture mode changes from

transgranular shear to one which is mainly intergranular rather than to transgranular cleavage.

Several aspects of the aging response suggested the possibility a classical aging reaction

might be occurring in the weld fusion zone. In particular, the fact no response was observed

for specimens aged above 11490 C(21000F) or for specimens given a "homogenizing" post-weld

anneal above 17600 C(32000 F) implied the aging response might be associated with the inho-

mogeneous weld fusion zone microstructures. If such were the case, detailed microstructural

investigations of the subject specimens should reveal the responsible factors.

Specimens were selected to include those aging conditions producing the most severe

ductility loss as well as conditions which were found to have no adverse effect on bend duc-

tility. With the exception of two specimens of '-111 tubing exposed at 10380C (19000 F)

and 12270 C(22400 F) for periods to 10,000 hours, all specimens were GTA sheet welds.

Analytical techniques used in the evaluation of specimens for this program included

scanning electron microscopy, transmission electron microscopy and Auger electron emission

3



spectroscopy in addition to normal optical metallographic procedures. Specimens were pre-

pared for evaluation by means of bend fracturing at -1960 C(-3200 F) except in the case of

the Auger specimens which were fractured at -1500 C(-2380 F), the lowest temperature attain-

able with currently available equipment.
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3.0 TECHNICAL PROGRAM

The outline of the technical evaluation program pursued is provided in Figure 1.

3.1 Background

Gas tungsten-arc (GTA) welds in T-111 are quite ductile with full 1000° t bends being

routinely achieved at -196°C(-3200 F) in the as welded or as welded plus 1 hour-13160 C

(24000 F) post-weld annealed condition. However, previous studies on Contract NAS 3-2540(1)

of the elevated temperature stability of refractory metal alloys have indicated GTA weld

structures in T-I 11 sheet are subject to a discernible change in low temperature bend test per-

formance following long-time exposures at 9820 to 11490C(18000 to 21000F) in ultra-high

vacuum. The temperature for weld tearing in the It bend test of aged GTA welds was found

to increase to as high as -180 C(00 F). More recent studies, on Contract NAS 3-11827(2),

using 1000 hour-i 149°C(2100 0F) aging in ultra-high vacuum,indicated a much less severe

loss of low temperature bend ductility. In the latter program It bend transition temperatures

of the aged welds ranged from -1010 to -1570 C(-1500 to -2500 F). One of the objectives of

the present program was to provide an explanation for the difference in the results of the two

programs. Other results of these investigations include:

* No base metal response was noted for any of the thermal exposures employed. In
itself, this does not preclude the possibility of aging in base metal. However, if
such aging is occurring the resulting It bend DBTT is still below -1960 C(-3200 F),
the lowest test temperature used.

· No loss of ductility was observed in tensile tests conducted at room temperature
and above.

* Notched tensile tests performed on aged GTA weld specimens indicated no notch
- -- sensitivity*to temperatures as low as -1960 C(-3200 F).

* That is, the notch-strength-ratios were consistently > 1.0.
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Failure does not occur by catastrophic fracture, but rather by a slowly propagating
grain boundary "tearing" process, invariably located in the oriented grain
structure of the weld fusion zone.

A review of the preceding observations indicates the problem is probably not of extreme

engineering significance since most common engineering tests do not corroborate the implied

ductility loss. However, the possibility that further degradation could result in similar beha-

vior at room temperature or above is , on the other hand, quite serious since the excellent

formability of T-1 11 base and weld metal is one of the alloy's most attractive properties.

Observations have been made of an apparently similar loss of bend ductility in T-111

tubing exposed to lithium or potassium for long periods in the 982 ° to 10380C(1800 0 to 19000F)

temperature range ( 3 ) . Post-exposure evaluation of T-1 11 tubing used in such systems includes

a ring flattening test whereby 0.64 cm.(0.25 in.) sections of 2.54 cm.(1.0 in.) diameter tubing

are crushed by radial pressure (commonly in a vise). Following certain exposure conditions these

flattening tests result in catastrophic intergranular failure whereas unexposed T-1 11 tubing

can be completely flattened without incident.

While the intergranular fracture mode observed in the ring flattening tests suggests a

similar aging effect as that implied by the aged GTA weld results, certain differences are

also evident. These include:

* The tests on the T-1 11 tubing are on fine-grained base metal rather than coarse-
grained GTA welds.

o The fractures occur during flattening at room temperature, a temperature where
the aged GTA welds display full bend ductility.

* The presence of liquid potassium or lithium introduces the possibility of contami-
nation during aging.
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In addition, certain peculiarities in the behavior of the tubing exposed to liquid alkali

metals suggests a possible influence of the conditions and procedures used in preparing the

specimens for testing. Conversely, the more controlled conditions under which the aged GTA

weld data were accumulated would seem to favor an explanation based on the metallurgical

response of the alloy to the thermal exposures.

3.2 Specimen Identification

Specimens representing a total of twelve different thermal exposure histories were chosen

for evaluation. These specimens were supplied from three previous NASA-sponsored contracts.

All but two specimens were from GTA welded 0.062 cm.(0.035 in.) T-111 sheet. The remain-

ing two specimens represented T-l11 tubing which had been used in alkali metal loops opera-

ted at 10380 C(19000 F) and 12270 C(2240 0F).

Details of the thermal history of the various specimens are provided in Table 1 along

with previously determined It bend DBTT's where available. The pre-age thermal treatments

indicated in Table 1 are in addition to the 1 hour-16490 C(3000 0F) recrystallization anneal

used as the final processing step for this alloy. The original contracts from which individual

specimens were supplied are also identified.

From Table 1 it can be seen that several specimens differ only in the use of a final

post-age anneal in ultra-high vacuum at 1982°C(36000 F) for 1 hour. This heat treatment was

used where duplicate specimens were available in order to assess its effect on the bend and

fracture behavior. Specimens 1 through 10 were aged in an ultra-high vacuum environment.

Specimens 11 and 12 differed somewhat in that they had been exposed to ultra-high vacuum

on their OD surfaces and lithium on the ID surfaces.

The results of pre-age chemical analyses, and where available post-age analyses for C,

O and N, are presented in Table 2. Although only spot-checks were performed after aging the

results of Table 2 indicate no significant changes occurred on aging which could be responsible

for the effects observed.
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3.3 Procedures

Specimen Preparation

Specimen configurations were dictated by the availability of material from the previous

experimental programs. Thus, material used for the aged welds evaluated on this program was

taken from sheet containing either longitudinal (specimens 4,5,8 and 9) or transverse (speci-

mens 1,2,3,6,7 and 10) GTA welds. Details of the specimen geometry for these two cases are

shown in Figure 2. All specimen blanking required was accomplished by means of shearing

at room temperature. No edge cracking or other visible defects resulted from this operation.

Material from the alkali metal corrosion loop program was supplied in the form of ap-

proximately 2.54 cm.(1.0 in.) long pieces of 2.54 cm.(1.0 in.) OD x 0.254 cm.(O.10 in.) wall

thickness T- 11 tubing. The specimen configuration used for the bend fracture evaluation of

this material is shown in Figure 3. The notches indicated (Figure 3) were machined to facili-

tate fracture of the heavy walled tube specimens.

All of the preceding information pertains only to those specimens bend-fractured at

-1960 C(-3200 F). These specimens were tested after the indicated shearing or machining,

without heat treatment of any type. This point is made at this time because of some variance

from this procedure for several of the Auger specimens. This will be elaborated upon later.

Specimens were prepared for Auger electron emission analysis using the specimen con-

figurations shown in Figure 4. Specific reference to the configuration appropriate for a par-

ticular specimen will be made in the Results section of this report.

Bend Fracturing of Specimens

All bend fracturing was performed in liquid nitrogen at -1960 C(-3200 F). Despite the

implied ductility loss in these specimens, several had to be bent in reverse in order to

achieve complete fracture. GTA weld specimens were bent with the top surface of the weld

11



Shear Shear

Punch (Radius 0.030 in.)

-0.030 in.

a) Transverse Weld Specimen

Bend Punch (Radius 0.030 in.)
0.030 in.

-f

b) Longitudinal Weld Specimen

FIGURE 2. Geometry of GTA Weld Specimens Used
for Bend Fracture Evaluations.
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Piece shown is longitudinal slice removed from
tubing with water-cooled cutoff wheel.

Notch radius
0.020 in. deep
0.010 in.

ID Surface

OD Surface

Bend Punch (Radius 0.030 in.)

A I

FIGURE 3. Geometry of T-111 Tube Specimens Used for
Bend Fracture Evaluations.
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in tension while the tube specimens were loaded in such a way that one notch was in tension

and the other in compression. Bend radius in all cases was 0.076 cm.(0.0 3 0 in.) and the load-

ing rate maintained constant at 2.54 cm./min.(1.0 in./min.).

Scanning Electron Microscopy (SEM)

Examination and characterization of the fracture surfaces of all specimens was accom-

plished using a Cambridge-Mark Ila scanning electron microscope located at the Westinghouse

Research and Development Center. In addition to its basic scanning function this instrument

is equipped to provide for energy-dispersive x-ray spectrography as well as for the recording

of electron channeling patterns from selected surface areas ( < 5 Im in diameter, from a sur-

face layer less than about 30 nm). This instrument therefore provides the unique capability of

recording surface features, surface composition and crystallographic details of the exact same

area of a specimen. The excellent depth of focus and resolution of the scanning electron

microscope eliminates the necessity for specimen preparation, thereby providing for the immed-

iate and direct observation of the fracture surface.

Transmission Electron Microscopy (TEM)

The same half of each fractured specimen which was examined on the scanning electron

microscope was used for the transmission electron microscope examinations. Foils were pre-

pared from regions as near to the fracture as possible. Discs 0.32 cm.(0.125 in.) in diameter

were punched from foils which had been mechanically ground and polished to about 0.012

cm.(0.005 in.) thickness. These discs were then electropolished at 380 C(1000 F) in an electro-

lyte consisting of 85 H2 SO
4
-15HF (conc. acids, by volume). Electropolishing was continued

until breakthrough occurred. Thin regions adjacent to the breakthrough were examined with

100 kV electrons on a Philips EM-300 electron microscope.

Auger Electron Emission Spectroscopy (AES)

General Description of Technique - Auger electron spectroscopy has developed rapidly

over the past several years into a powerful method for the chemical analysis of solid surfaces.

15



Auger spectroscopy is accomplished by irradiating the surface of a solid with a primary

electron beam while energy analysis is performed on the resultant secondary electrons. When

this is done peaks are detected in the secondary electron energy distribution function, N(E),

when plotted as a function of the energy of the secondary electrons. While the Auger peaks

can be detected in the N(E) function directly, they are more evident in the differentiated

function, dN(E)/dE, due to the fact that differentiation effectively removes the strong back-

ground caused by backscattered primary electrons.

The energy of Auger electrons, and hence their position on dN(E)/dE vs. E plots, is

directly related to the core levels of the parent atom. Under the excitation of the incident

electron beam the atom is ionized; that is, an electron is knocked out of one of the core

electron levels. The atom may then decay to the equilibrium state by one of two processes.

The first and more familiar way in which this occurs is through the emission of an x-ray, as

in the process whereby characteristic x-ray spectra are produced. The other process by which

the equilibrium state may be attained is by the emission of an "Auger electron". These two

processes are compared diagrammatically in Figure 5 for the case of an atom ionized to the

K state. For low electron energies, less than 2 to 3 kev, Auger transitions dominate (4'5)and

they become comparable to x-ray production at 4 kev. If low energy transitions are chosen

for study, the Auger technique is very sensitive to all elements except hydrogen and helium

which do not possess core electrons.

The energy of the Auger electron produced depends only on the energy levels of the

atom and not on the energy of the electron responsible for the initial ionization. Hence, the

kinetic energy of the ejected Auger electron may be estimated from a knowledge of the bind-

ing energy of the participating core electrons. As the atomic number of the atom increases

many more transitions become possible and, lacking well-defined selection rules such as exist

for x-ray fluorescence, we are forced to rely on empirical data. Presently this data is supplied

by compilation of the Auger spectra of the pure elements. Thus, by analyzing the secondary

16
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a - K electron lost (ionization)

b - L electron replaces K electron
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Normal incident electron beam >30 kV

Typical photon energy produced > 4 kev

Auger Process

a - K electron lost (ionization)

b - L electron replaces K electron

c - M electron emitted as "Auger electron"

Normal incident electron beam 2 to 5 kV

Typical Auger electron energy < 2 kev
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FIGURE 5. Electron Energy Diagram Comparing Transitions Giving Rise to
X-Ray and Auger Electron Emissions.
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electron energy spectrum of a given specimen, together with the knowledge of the major

constituents, we can determine which additional elements are present. The concentration of

a particular atomic species can be estimated by comparing its intensity on the experimentally

observed Auger spectrum to the intensity of the same peak on the Auger spectrum of the pure

element.

The low energy of Auger electrons implies a particularly useful aspect of Auger spectro-

scopy as an analytical tool. The escape depth of Auger electrons is equal to the electron-

electron mean free path in the specimen. Recent measurements indicate this to be < 1 nm for

most metals for electron energies < 2 kev. Hence, peaks in the secondary electron energy

spectrum which are measured originate from Auger transitions occurring only in the first few

atomic layers from the surface. This is of obvious importance in the study of surface-or inter-

face-controlled phenomena. To avoid problems of surface contamination during examination,

Auger analysis is normally carried out in systems equipped with sorption pumps for roughing

and ion and sublimation pumps for high vacuum. These enable routine operation at pressures

in the 10- 1 0 torr range. In addition, the composition profile may be determined as a function

of depth below the surface by means of an ionized inert gas sputtering attachment.

Details of recent applications of Auger electron spectroscopy to metallurgical studies

may be found by reference to the literature( 6 10 )

This Program - Specimens representing conditions 1,3,10,11 and 12 ( Table 1) were

chosen for examination by AES. The analytical work was carried out at Physical Electronics

Industries, Edina, Minnesota. Separate specimens - i.e. other than the bend-fractured speci-

mens - were required for these studies due to the fact fracture must be accomplished in situ

in the ultra-high vacuum environment of the Auger equipment in order to avoid excessive

oxygen and carbon "pick-up" on the fracture surfaces.
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Specimens were cooled to approximately -1500 C(-2380 F) by means of running liquid

nitrogen through a copper cooling block used to hold the specimens for fracture. Fracture is

achieved by means of an impact-type hammer arrangement, activated externally through a

bellows feed-through into the test chamber. Use of a carousel-type specimen holder permitted

all specimens to be analyzed in sequence, without the necessity of repeated disruption of

the vacuum. To further minimize possible contamination specimens were not fractured until

immediately before their respective Auger analyses.

19



4.0 RESULTS

During the course of this investigation it became increasingly probable that the factors

responsible for the behavior observed in the aged GTA sheet welds were quite different from

those responsible for the low room temperature ductility of the T-1 11 tube material. The results

of the experimental program confirmed this. Hence, the results of the evaluation of these two

types of T-1 11 are considered separately.

4.1 Aged GTA Sheet Welds

Specimen 1. This specimen was aged 1000 hours at 9820 C(18000 F) in ultra-high vacuum.

The microstructure after aging is shown in Figure 6. Precipitates have developed along the

interdendritic boundaries of the weld fusion zone but there is no evidence of grain boundary

precipitation. SEM examination of the bend-fractured specimen revealed failure had occurred

due to separation along fusion zone grain boundaries, Figure 7. In the 450X micrograph (Figure

7) several of the elongated weld grains are seen to be tipped by regions of ductile rupture.

Examination of the specimen fractured in the Auger apparatus indicated failure had occurred

largely in the same manner, but isolated regions of cleavage and dimpled rupture were present.

We were unable to obtain a high quality thin foil for examination by transmission

electron microscopy from a region in the weld zone near to the fracture. A foil prepared

from a region near the fusion zone/ HAZ interface was exceptionally "clean" with no evi-

dence of intragranular precipitation and a low dislocation density.

Results of Auger emission spectroscopic analysis performed on a freshly fractured speci-

men are presented in Table 3. The carbon, oxygen and nitrogen on the fracture surface is

mainly the result of gas adsorption rather than segregation of these elements as impurities at

the grain boundaries. The second entry for specimen 1, "new area", represents the results

obtained by exciting a second area of the fracture surface. The higher C, O and N values

are due to the fact this data was accumulated after the fracture surface had been exposed

20
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•:^v;.Jl 
23,901 H A Z / W e l d 750X 

Aged 1000 Hours-982°C(1800°F) 

FIGURE 6. Microstructure of GTA Weld Specimen 1 
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450X 

Aged 1000 Hours-982°C (1800°F) 

FIGURE 7. Scanning Electron Micrographs of Fracture Surface of GTA 
Weld Specimen 1 ; Fractured at - 196°C ( - 320°F ) . 
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for a longer time. Note the hafnium level is much higher and the tungsten level much lower

than the nominal alloy composition. This is not at all unusual and confirms earlier results ( l )

The only significant impurities observed are fluorine and potassium. The actual fluorine con-

centration may be much higher than recorded on Table 3 since this atom desorbs very rapidly

under the electron beam. The magnitude of the potassium peak varied considerably across the

fracture surface. While it is not unlikely the fluorine results from pickling and cleaning opera-

tions using HF acid, the possible sources of potassium contamination are not so obvious.

Specimen 2. This specimen is identical to specimen 1 (1000 hours-9820 C(18000 F)) ex-

cept for the use of a 1 hour-19820 C(36000 F) post-age anneal. This anneal has resulted in

extensive grain growth in the base metal and HAZ, Figure 8. The fusion zone has undergone

less significant change. SEM examination of the fracture surface revealed a mixed fracture

mode. Regions of the specimen displayed what appeared to be cleavage-type markings while

others, apparently differing mainly in orientation, failed by a ductile, dimpled rupture.

Micrographs of these various features are shown in Figure 9.

Transmission electron microscopy revealed very little difference between this specimen

and specimen 1. Figure 10 is a micrograph of a foil prepared from the weld fusion zone. Some

dislocation tangles are in evidence but very little precipitation. Where precipitates were

observed they were quite large and blocky and situated at the grain boundaries. Previous

extraction and identification of this type of precipitate has shown it to be HfO2 .

Specimen 3. Aged 5000 hours at 11490C(21000 F) this specimen shows a microstructure

much like that of specimen 1. Precipitation is interdendritic within the weld zone and nil

elsewhere, Figure 11. SEM revealed the fracture morphology to be intergranular, the grain

boundaries being quite clean and free of precipitation, Figure 12. The specimen fractured

for Auger analysis at -150°C(-2380 F) also failed by intergranular fracture but, although most

grain surfaces were clean, some evidence of coarse precipitation was observed, Figure 13.

Analysis of several of the larger precipitates with the energy-dispersive x-ray spectrometer

of the scanning microscope showed very high hafnium content. These particles are probably

24
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23,902 HAZ / Weld 80X 

Aged 1000 Hours-982°C(1800°F) 

+ 1 Hour - 1982°C (3600°F) 

FIGURE 8. Microstructure of GTA Weld Specimen 2. 
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45 X 

yd " 

500X 5000X 

Aged 1000 Hours - 982°C (1800°F) 

+ 1 Hour - 1982°C (3600°F) 

FIGURE 9. Scanning Electron Micrographs of Fracture Surface of GTA 
Weld Specimen 2 ; Fractured at - 1 9 6 ° C ( -320°F) . 
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FIGURE 10. Transmission Electron Micrograph of Weld Zone 
Structure in GTA Weld Specimen 2. 
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23,903 HAZ/Weld 80X 

23,903 HAZ/Weld 750X 23,903 

Aged 5000 Hours - 1149°C (2100°F) 

Weld 750X 

FIGURE 11. Microstructure of GTA Weld Specimen 3. 
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45 X 

45 OX 

Aged 5000 Hours - 1149°C (2100°F) 
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FIGURE 12. Scanning Electron Micrographs of Fracture Surface of GTA 
Weld Specimen 3 ; Fractured at - 1 9 6 ° C ( -320°F) . 
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45 X 

4500X 4500X 

Aged 5000 Hours 1149°C (2100°F) 

FIGURE 13. Scanning Electron Micrographs of Fracture Surface of GTA 
Weld Specimen 3 ; Fractured in Auger Apparatus at 
( -238°F) . 

150°C 
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HfO
2

. Unfortunately, we were not able to obtain a satisfactory foil for TEM examination of

this specimen.

Results of Auger analysis on specimen 3 are shown in Table 3. As mentioned previously

for specimen 1, the carbon, oxygen and nitrogen concentrations are due to adsorption in the

high vacuum environment following fracture. As for specimen 1 we again have fluorine and

potassium present at the grain boundaries. Unlike specimen 1 we also have a considerable

silicon concentration, 6%. The second entry, "sputtered", in Table 3 is the result obtained

when the fracture-surface was argon sputtered to remove about 1 nm (10 A). The silicon con-

centration is now zero. Position of the silicon peak on the Auger spectrum is known to be no-

ticeably altered if the silicon is present as SiO 2 rather than elemental silicon. From the

observed silicon peak on the Auger spectrum of specimen 3 we can conclude with reasonable

certainty that a very thin layer, perhaps only a monolayer, of silicon was present at the fusion

zone grain boundaries.

Specimen 4. The microstructure of this specimen, aged 10,000 hours at 1149°C(21000 F),

is shown in Figure 14. The additional 5000 hour aging has not altered this appreciably from

that of :specimen 3 ( Figure 11). Totally unexpected therefore was the ductile behavior of

this specimen in bending at -1 960 C(-3200 F). To completely fracture this specimen it had to

be bent back and forth a number of times. Scanning micrographs of the fracture are shown in

Figure 15. Regions of dimpled rupture quite often showed precipitate-void relationships such

as seen in the 4500X micrograph of Figure 15.

Examination of this specimen by transmission electron microscopy revealed nothing

unusual except for a rather large concentration of grain boundary oxide precipitates, in many

cases quite coarse. This is in agreement with the SEM observations on the fracture surface.

Specimen 5. This specimen was aged 10,000 hours at 11490 C(21000 F) and given a 1

hour-19820 C(36000 F) post-age anneal. The microstructure of the specimen bend-fractured

at -1960 C(-3200 F), Figure 16, showed some evidence of deformation twinning in the fusion

31



23,904 H A Z / W e l d 750X 

» « 

23,904 

- #, 

Weld 75 OX 

Aged 10,000 Hours-1149°C (2100°F) 

FIGURE 14. Microstructure of GTA Weld Specimen 4. 
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450X 

900X 

4500X 

Aged 10,000 Hours - 1149°C (2100°F) 

FIGURE 15. Scanning Electron Micrographs of Fracture Surface of GTA Weld 
Specimen 4 ; Fractured at —196°C (—320°F). 
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zone. The fracture appears to have occurred by more than one process. SEM examination con-

firmed the mixed fracture mode, Figure 17. Fracture has been the result of cleavage and

ductile rupture. Most of the regions of ductile rupture were characterized by a high concen-

tration of precipitates within the dimpled pockets. Note the similarity between this specimen

and specimen 2 ( Figure 9) which was also given a 19820 C(36000F) post-age anneal.

TEM examination showed the fusion zone grain volumes to be relatively clean. Precipi-

tates that were present were generally located along the grain boundaries. Most dislocations

observed were found to lie along one or two directions, Figure 18. Observations of dislocation-

precipitate interactions were rare, due at least in part to the scarcity of precipitation.

Specimen 6. Aged 10,000 hours at 13160C(24000 F), the microstructure of this specimen

showed an increase in the amount of grain boundary precipitation in the heat affected zone

and a decrease in the interdendritic precipitate in the fusion zone, Figure 19. Scanning

micrographs of the bend-fractured specimen reveal regions of dimpled rupture together with

cleavage failure, Figure 20. Certain similarities can be noted between the fracture behavior

of specimen 6 and specimens 2 (Figure 9) and 5(Figure 17).

The dislocation density was generally low with some evidence of cross-slip and dipole

formation, Figure 21. Typically, evidence of precipitation was scarce except for oxide par-

ticles at the grain boundaries.

Specimen 7. This specimen was given a 1 hour-19820 C(3600°F) anneal after aging for

10,000 hours at 13160C(2400 0 F). Little evidence of the prior weld structure remains in the

fusion zone, Figure 22, and the grain boundary regions exhibit a peculiar broadening effect.

Fracture morphology is mixed with regions of dimpled rupture and cleavage,Figure 23. Pre-

cipitates are associated with most of the regions of ductile rupture. TEM on this specimen

indicated a structure much like that of specimen 6, with precipitates being found only at or

very near the grain boundaries.
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FIGURE 17. Scanning Electron Micrographs of Fracture Surface of GTA 

Weld Specimen 5 ; Fractured at —196°C (—320°F). 
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71-2936 
0.5 pm 

39,220X 

Aged 10,000 Hours-1149°C (2100°F) 
+ 1 Hour - 1982°C ( 3600°F ) 

® Astronuclear 
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FIGURE 18. Transmission Electron Micrograph of GTA Weld 
Specimen 5. 
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FIGURE 19. Microstructure of GTA Weld Specimen 6. 
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1100X 

5500X 

Aged 10,000 Hours - 1316°C (2400°F) 

FIGURE 20. Scanning Electron Micrographs of Fracture Surface of GTA 
Weld Specimen 6 ; Fractured at - 1 9 6 ° C ( -320°F) . 
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FIGURE 22. Microstructure of GTA Weld Specimen 7. 
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2000X 

Aged 10,000 Hours-1316°C (2400°F) + 1 Hour- 1982°C (3600°F) 

FIGURE 23. Scanning Electron Micrographs of Fracture Surface of GTA 
Weld Specimen 7 ; Fractured at - 1 9 6 ° C (—320°F). 

42 



® _~ Astronuclear
Laboratory

Specimen 8. This specimen was aged 1000 hours at 11490 C(21000 F). The microstructure

is similar to that observed previously (specimen 3) after aging at that temperature. Precipita-

tion is occurring interdendritically in the weld fusion zone but virtually nowhere else, Fig-

ure 24. SEM examination of the bend-fractured specimen, Figure 25, revealed regions of

ductile failure, intergranular fracture and cleavage. Preference for one mode of failure over

the others appeared to depend on the orientation of the grain structure with respect to the

bending plane. A good foil was not obtained from the weld zone for transmission electron

microscopy. A foil prepared from base metal revealed only the presence of isolated grain

boundary precipitates.

Specimen 9. This specimen was aged 1000 hours at 11490 C(2100°F) and given a 1 hour

post-age anneal at 19820 C(36000 F). The high temperature anneal has reduced the evidence

of interdendritic precipitation in the fusion zone, Figure 26. The section in Figure 26 show-

ing the fracture indicates considerable deformation occurred prior to failure. Scanning micro-

graphs of the bend-fractured specimen are similar to those of the other specimens given the

19820 C(36000 F) post-age anneal. Regions of cleavage and dimpled fracture are intermixed,

Figure 27, with precipitates typically associated with the ductile regions.

Transmission electron microscopy revealed the matrix to have an exceptionally low

dislocation density, presumably due to the "cleaning-up" effect of the high temperature

post-age anneal. The general matrix condition can be seen by reference to Figure 28 where

we observe dislocation interactions with some of the few intragranular precipitates present.

Figure 29 shows two micrographs of HfO 2 particles along a grain boundary in the weld fus-

ion zone. Note the near total absence of dislocations in the vicinity of the boundary.

Specimen 10. This specimen differed from all the other GTA weld specimens in that it

was given a 1 hour-1982°C(36000 F) post-weld anneal prior to aging 1000 hours at 11490 C

(2100°F). All previous specimens had been given the "standard" 1 hour-13160 C(24000 F) post-

weld anneal. The microstructure of this specimen is shown in Figure 30 where the coarse

grain size resulting from the high temperature anneal is apparent.
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23,908 Weld 75 OX 

Aged 1000 Hours - 1149°C ( 2100°F ) 

FIGURE 24. Microstructure of GTA Weld Specimen 8. 
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2000X 

Aged 1000 Hours - 1149°C ( 2100°F ) 

FIGURE 25. Scanning Electron Micrographs of Fracture Surface of GTA 
Weld Specimen 8 ; Fractured at - 1 9 6 ° C ( -320°F) . 
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23,909 Longitudinal Section 80X 

23,909 Transverse Section 80X 
23,909 Weld 750X 

Aged 1000 Hours - 1149°C (2100°F) 

+ 1 Hour - 1982°C ( 3600°F) 

FIGURE 26. Microstructure of GTA Weld Specimen 9. 
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ZM¥ 

Aged 1000 Hours - 1149°C (2100°F ) + 1 Hour -1982°C (3600°F) 

FIGURE 27. Scanning Electron Micrographs of Fracture Surface of GTA 
Weld Specimen 9 ; Fractured at - 1 9 6 ° C ( - 3 2 0 ° F ). 
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57,800X 
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+ I Hour-1982°C (3600°F) 

FIGURE 28. Transmission Electron Micrograph of GTA 
Weld Specimen 9. 
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FIGURE 29. Transmission Electron Micrographs Qf GTA Weld 
Specimen 9. 
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FIGURE 30. Microstructure of GTA Weld Specimen 10. 
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Scanning micrographs of the fracture surfaces of the bend-fractured specimen and the

Auger-fractured specimen are presented in Figures 31 and 32, respectively. Both specimens

display predominantly intergranular fracture although the Auger specimen, tested at a slight-

ly higher temperature, does exhibit regions of dimpled rupture, usually associated with areas

of high grain boundary precipitate density.

A transmission micrograph of a region within the fusion zone and very near the fracture

is shown in Figure 33. The sub-boundaries present were probably formed by dislocation rear-

rangements occurring during the post-weld anneal while the tangles of matrix dislocations

more likely occurred during bend-fracturing. At lower magnifications it appeared as if dis-

location-precipitate interactions were responsible for the tangles seen; however, examina-

tion at higher magnifications established the lack of matrix precipitation.

Results of Auger analysis of this specimen are presented in Table 3. Similar to the re-

sults on specimen 3, fluorine, potassium and silicon were found on the fracture surface. One

possible reason the silicon concentration was lower than for specimen 3 is the fact the ailur'

did not occur solely by intergranular fracture. Sputtering (data not given in Table 3) of only

0.6 nm (6 A) from the fracture surface was sufficient to remove the silicon peak from the

Auger spectrum.

4.2 Aged T-111 Tubing

Specimen 11. The microstructure of this material, aged for 7500 hours at 10380 C(19000 F)

is shown in Figure 34. Experience with T- 11 has established that the grain boundary preci-

pitate observed is almost certainly HfO2 . The plentiful occurrence of this precipitate implies

a much higher oxygen content than normal for this alloy.

Scanning micrographs of the fracture surface of the specimen bend-fractured at -1960 C

(-3200 F) are shown in Figure 35. The fracture is >90% intergranular with isolated regions of
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+ Aged 1000 Hours-1149°C(2100 F) 

FIGURE 31 . Scanning Electron Micrographs of Fracture Surface of GTA 

Weld Specimen 10 ; Fractured at - 1 9 6 ° C ( -320°F) . 
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+ Aged 1000 Hours- 1149°C (2100°F) 

FIGURE 32. Scanning Electron Micrographs of Fracture Surface of GTA Weld 
Specimen 10; Fractured in Auger Apparatus at —150°C (—238°F). 
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FIGURE 33. Transmission Electron Micrograph of GTA Weld Specimen 10. 
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FIGURE 34. As-Aged Microstructure of T - l l l Tube S pecimen 11. 

55 



If 1 

160X 

500X 

5000X 

Aged 7500 Hours - 1038 C ( 1900°F ) 

FIGURE 35. Scanning Electron Micrographs of Fracture Surface of T-111 
Tube Specimen 11 ; Fractured at —196°C ( —320°F ). 
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dimpled rupture. Precipitates were invariably associated with the dimpled regions. Micro-

graphs of the Auger tested specimen, Figure 36, show a completely different picture. The

fracture displays very high ductility, indicating failure occurred largely due to transgranular

shear. The reason for this difference was not immediately obvious but three possible explana-

tions were possible based on the slightly different pre-evaluation histories:

1. Bend fractures were performed at -196°C(-3200 F) while Auger fractures were
accomplished at -150°C(-238°F).

2. Bend-fracture specimens were full-section tube wall pieces (Figure 3) while the
Auger specimens were surface ground prior to testing ( Figure 4b). This suggested
the possibility surface contamination was playing an important role.

3. The Auger specimens were annealed 1 hour at 9820 C(18000 F) after machining, to
eliminate possible effects of the machining operation.

By preparing a series of full section tube wall specimens (Figure 4c) and testing in a

controlled set of conditions we were able to establish the third possibility as responsible for

the behavior observed. Hence, a specimen was prepared for Auger analysis without the use of

a post-machine anneal. Following Auger analysis the fracture surface was examined by SEM,

Figure 37. The fracture was 80-90% intergranular, in agreement with the specimen bend-

fractured at -196°C(-3200 F), Fi gure 35.

These results imply the notch-machining operation has a tremendous influence on the

fracture behavior of this material. There have been other similar observations of the critical

nature of the pre-test specimen preparation procedure and while the exact mechanism is not

known the possibility of a hydrogen-like embrittlement effect is indicated.

Figure 38 is a transmission electron micrograph of a region near the fracture of the

bend-fractured specimen. The structure shown is fairly typical of this material. Dislocation

segments display a tendency to lie along preferred directions. Dipoles and some evidence of

cross-slip can be seen.

57



: 

500X 

2000X 

HH 
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FIGURE 36. Scanning Electron Micrographs of Fracture Surface of T-111 
Tube Specimen 11 ; Fractured in Auger Apparatus at —150 C 
( - 2 3 8 F). Annealed 1 Hour-982°C (1800 F) Prior to Testing. 
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FIGURE 37. Scanning Electron Micrographs of Fracture Surface of T - l 11 
Tube Specimen 11 ; Fractured in Auger Apparatus at —150 C 
-238°F ) . Not Annealed Prior to Testing. 
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FIGURE 38. Transmission Electron Micrograph of T-111 Tube 
Specimen 11. 
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Results of the Auger analysis of specimen 11 are presented in Table 4. Only the results

of the re-test are provided since the failure to achieve intergranular separation the first time

renders that data meaningless. The only significant segregation which could be detected at

the grain boundaries was due to hafnium and possibly silicon. The high energy silicon peak

almost exactly coincides with a strong hafnium peak, making accurate determination of trace

amounts of silicon extremely difficult since only the rather weak silicon peak at 91 ev can

be used. This was not a problem in specimens 3 or 10 (Table 3) since the silicon concentra-

tion was considerably greater.

Specimen 12. This specimen was removed from a segment of a loop which had been

exposed to 12270 C(22400 F) for 10,000 hours. The microstructure of the as-exposed tubing is

shown in Figure 39. Comparison to Figure 34 reveals a tremendous difference in the "clean-

liness" of the two materials. The microstructure of specimen 12 is typical of "normal" T-I1 1

-i.e T- l11 which has not been exposed to compromising environments.

Scanning micrographs of the specimen bend-fractured at -1960 C(-3200 F) are presented

in Figure 40. Fracture has occurred by a mixed mode, with regions of intergranular, cleavage

and ductile rupture all present. As we found for specimen 11, the initial Auger specimen,

which had been annealed 1 hour at 9820 C(18000 F) prior to testing, failed by transgranular

shear at very high ductility, Figure 41. Although not as dramatically different as for speci-

men 11, again a change in behavior was indicated.

Using the same procedure as for specimen 11, a series of full section tube wall speci-

mens were prepared and tested. The second Auger-tested specimen, not given a pre-test

anneal at 9820 C(18000 F), displayed a fracture somewhat between that of the bend-fractured

specimen and the previous Auger specimen, Figure 42. This implies that, although the pre-

test anneal has some influence on the behavior, it is not nearly as profound as for specimen

11. Hence, it appears that:
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FIGURE 39. As-Aged Microstructure of T-111 Tube Specimen 12. 
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FIGURE 40. Scanning Electron Micrographs of Fracture Surface of T - l l l 
Tube Specimen 12 ; Fractured at —196 C (—320 F). 
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FIGURE 4 1 . Scanning Electron Micrographs of Fracture Surface of T - l l l 
Tube Specimen 12 ; Fractured in Auger Apparatus at —150 C 

( -238°F) . Annealed 1 Hour-982°C (1800°F) Prior to Testing. 
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FIGURE 42. Scanning Electron Micrographs of Fracture Surface of T - l 11 
Tube Specimen 12; Fractured in Auger Apparatus at —150 C 
(—238 F). No t Annealed Prior to Testing. 
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(i) specimen 12 is less prone (than specimen 11) to the "hydrogen embrittlement
effect" induced by the machining and cutting operations, and

(ii) specimen 12 is approaching a true ductile-brittle transition in going
to -196°C (-3200 F) from -150°C (-238°F).

Examination of this specimen by TEM was limited by the fact only one good foil was

obtained. This foil was prepared from a region right at the fracture and revealed a very high
dislocation density. Only 1 or 2 very small, isolated grain boundary precipitates were ob-

served.

The results of Auger analysis of specimen 12 are presented in Table 4. The low hafnium
value and higher tungsten content than was found for the other Auger specimens is in agree-
ment with the SEM observations of non-intergranular fracture. This specimen had the lowest

concentration of impurities of all the T-1 11 specimens analyzed by Auger electron spectro-

scopy on this program.
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5.0 DISCUSSION

5.1 Aged GTA Sheet Welds

A summary of the fracture behavior of the aged GTA sheet weld specimens is presented

in Table 5. Percentages of the various fracture modes were estimated from the SEM studies of

the fracture surfaces. In interpreting the data of Table 5 an extremely important point to keep

in mind is that specimens were force-fractured. For several this required repeated reverse

bending at -196°C(-3200 F). Hence, the fact that cleavage was observed on the fracture sur-

faces does not necessarily imply truly brittle behavior. In many cases, the choice between

cleavage and a more ductile failure mode appeared the result of local orientation.

The effect of the 1 hour-19820 C(36000 F) post-age anneals has been largely to "normal-

ize" the fracture behavior. That is, specimens 2,5,7 and 9 display very similar fracture char-

acteristics despite the fact their companion specimens, not post-age annealed, exhibited

fractures ranging from >95% intergranular to 100% shear.

Contrary to general expectations, the presence of large, discrete HfO 2 precipitates at

the grain boundaries seems to promote localized ductile rupture. Evidence of this was noted

even on fracture surfaces predominantly intergranular, Figure 13. The mechanism by which

this occurs is well established (1 1,12) During the plastic deformation of materials containing

inclusions and incoherent precipitates, microvoids or free surfaces form at the second phase-

matrix interface due to differences in the elastic and plastic properties. As deformation pro-

ceeds the cavities are enlarged until the remaining matrix becomes constricted in the inter-

cavity regions. Rupture ultimately occurs when the remaining matrix regions can no longer

support the applied stress.

From the TEM studies we are able to conclude that, with the exception of possible

coarsening of the grain boundary oxide precipitates, no general aging reaction is occurring.

The low dislocation density observed in most specimens may not be of particular significance
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Table 5. Summary of GTA Weld Specimen Fracture Behavior.

(a) IG ='intergranular

Cl = cleavage

Duct. = ductile

Values are approximate %'s based on SEM results.

(b) For details see Table 3, page 23.

See Table 1, page 9 , for thermal histories of specimens.
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Fracture Fracture Mode (a) Maior
Specimen Temp. (b)

0S C en o( 0 F) IG Cl Duct. Auger Results (b)

1 -196(-320) >95 <5

1 Auger -150(-238) >90 5 <5 3 F; up to 6.5 K

2 -196(-320) 70 30

3' -196(-320) >95 <5

3 Auger -150(-238) >90 5 <5 6 Si ; Trace F, K

4 -196(-320) 100

5 -196(-320) 60 40

6 -196(-320) 70 30

7 -196(-320) 60 40

8 -196(-320) 50 50

9 -196(-320) 35 65

10 -196(-320) >95 <5

10 Auger -150(-238) >90 5 <5 1.5 Si ; Trace F, K



since this will be at least partially dependent on the distance from the fracture to the region

from which foils were prepared. However, the lack of matrix precipitation and the absence of

dislocation-grain boundary precipitate interactions are significant.

To lend perspective to the data of Table 5 recall that specimen 6 showed no indication

of a ductility limitation to temperatures as low as -1960 C(-3200 F), Table 1. This suggests that

in "normal" it bend testing (i.e. no repeated reversal of bending or force fracturing) no loss

of ductility would be observed for specimens 2, 4-9. Only specimens 1,3 and 10 display what

appears to be true ductility impairment. These specimens do not represent unique conditions

of thermal exposure. Hence, it is doubtful that thermal response of the microstructure is re-

sponsible for the effects observed.

The results of Auger analysis of the fracture surfaces which were presented in Table 3,

and the highlights of which are included in Table 5, suggest segregation of contaminants as

a possible explanation for the behavior of specimens 1, 3 and 10. No experience exists with

regard to the effect of fluorine, potassium or silicon in tantalum-base alloys. Nevertheless,

lacking evidence to the contrary, the presence of these "foreign" elements appears to be

adversely affecting the cohesive properties of the grain boundaries sufficiently to favor the

observed intergranular fracture mode.

Fluorine almost certainly is present from the pickling and cleaning operations which

employ hydrofluoric acid. It is much more difficult to explain the presence of potassium and

silicon. Since some specimens from the same heats of T-1 11 as those exhibiting intergranular

fracture were not prone to that problem we can conclude that contamination, at whatever

stage of the alloy's history it was introduced, is a localized condition. In this respect the

aging treatments may be serving a secondary role in that segregation of these impurities to

the fusion zone grain boundaries could conceivably be enhanced by prolonged elevated

temperature exposures.
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In summary, no evidence of a "classical" aging reaction occurring in the welds due to

long-time thermal exposures was obtained. Rather, it appears that random intergranular fracture

behavior is related to the presence of potassium, silicon and fluorine at the fusion zone grain

boundaries of the specimens affected. The more sophisticated analytical procedures used in the

present program have provided information which largely discredits the earlier interpretation

of aging in T-1 11 GTA welds ( Contract NAS 3-2540 ( 1)) which was based on an extensive

fusion zone precipitation reaction.

5.2 Aged T-111 Tubing

The fracture behavior of the aged tube specimens 11 and 12 is summarized in Table 6.

The difference in behavior of the two Auger specimens appears to be solely the result of a

one hour-9820 C (18000F) post-machine annealing treatment. A complete reversal in

behavior is indicated, implying that something is occurring during the machining process

which is causing a marked shift to intergranular fracture. This effect has been noted pre-

viously whereby T- 11, particularly after long-time aging at temperatures near 10380C

(19000 F), is prone to a hydrogen-like embrittlement effect of cut, polished, or metallograph-

ically prepared in the presence of aqueous solutions and subsequently stressed (3). More

recently in tests conducted at NASA Lewis ( ) , the NASA investigators also have shown that,

even if strictly dry pre-test conditions are observed, the presence of small amounts of

moisture in the test atmosphere is sufficient to cause erratic bend behavior in T- 11 aged

at 10380 C (19000 F).

An important aspect of the results of evaluations on specimen 11 was the observation that,

despite apparently high oxide precipitate density at the grain boundaries, proper pre-test

handling and testing procedures permit ductile behavior of this material to temperatures at

least as low as -1500 C (-2380 F).
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Table 6. Summary of T-111 Tube Specimen Fracture Behavior.

(a) These specimens were post-machine annealed 1 hour-982 C(18000 F) prior to

testing .

(b) IG = intergranular

Cl = cleavage

Duct. = ductile

Values are approximate %'s based on SEM results.

(c) For details see Table 4, page 62.

See Table 1, page 9 , for thermal histories of specimens.
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Fracture Fracture Mode (b) Major Auger
Specimen Temp. (c)0 ( Results

°C ( aF ) IG Cl Duct.

11 -196(-320) >90 <10

11 Auger (a )-150(-238) 10 90 Only matrix & interstitials

11 Auger -150(-238) 80 10 10 Trace F, Si

12 -196(-320) 40 40 20

12 Auger(a) -150(-238) 100 Very weak F, K

12 Auger -150(-238) 10 20 70 Very weak F
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Although a similar sensitivity to pre-test handling was noted for specimen 12, the effect is

less dramatic than for specimen 11. Although chemical analyses was not available for these

specimens, chemical analysis of materials close to these in the test loops showed specimen

11 to be higher in interstitials than specimen 12(14). The fact that considerable ductility

was observed at -150°C (-2380 F) even in material not post-machine annealed coupled with

the observation of about 40% intergranular fracture at -1960 C (-320°F) for the same material

suggests the following:

(i) specimen 12 is less prone to the embrittling effect induced by improper pre-test

handling- than is specimen 11, and

(ii) we appear to be approaching a true ductile-brittle transition in this material as

we approach -1960 C (-3200 F).

Based on microstructural observations, there does not appear to be anything unique

about the 10380 C (1900°F) aging temperature which by itself renders T-l 11 aged at that

temperature more susceptible to intergranular failure than material aged at any other tem-

perature. Comparison of the microstructure of specimen 11 (aged at 10380 C) with that of

specimen 12 (aged at 12270 C) does reveal a significant difference in quantity of HfO2

precipitate which could be due to poorer quality starting material, operation in an inadequate

vacuum, or characteristic of the mass transfer kinetics at those particular sections of the loop.

Specimen 11 has undergone apparent oxygen contamination during operation. Oxygen

has been shown to degrade the low temperature ductility of T-1 11 when introduced into the

T-111 matrix during low temperature (< 1100 C) low oxygen partial pressure oxidation( ' 16, 17)

The loss in low temperature ductility results from the potent strengthening of the matrix

by the coherent hafnium oxide precipitate which causes an increase in the DBTT. However,

the recovery of low temperature ductility in specimen 11 after a subsequent one hour anneal
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at the operating temperature of 10380 C (19000F) most likely precludes this as the responsible

cause.

Although no direct metallographic evidence was observed, the sensitivity of T-1 11

aged at 10380 C (19000 F) to post-age handling in moist environments does suggest a discontinuous

phenomena such as an allotropic transformation. Hafnium is completely soluble in tantalum at

1800°C and above, but the Ta-Hf phase diagram does show a miscibility gap with a mono-

tectoid decomposition reported to occur at 10500 C (19220 F) where flTa + /3Hf -> /3Ta +

a Hf( 1 8 ) . (At the monotectoid temperature of 10500 C, the solubility of hafnium in tantalum

is approximately 12 atom percent. ) This monotectoid decomposition reaction may explain

why T- 11 is apparently more sensitized to hydrogen embrittlement after aging at 10380°C

(19000 F) than at any higher temperature. However, results of this program do show that

proper handling before and during post-age testing of T-111 can result in quite ductile

behavior.
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6.0 CONCLUSIONS

The results of this investigation allow the following conclusions:

Aged GTA Sheet Welds

1. No classic aging temperature range exists from 9820 C (18000F) through 13160C

(24000F) which results in a propensity for intergranular failure at low temperature.

2. No evidence was obtained to support the possibility of an aging reaction occur-

ring in weld specimens exposed for long times in the temperature range 982°C

(18000 F) through 1316°C(24000 F).

3. Precipitation was largely confined to the presence of coarse HfO 2 precipitates

at the grain boundaries. Very little intragranular precipitation was observed.

4. Dislocation densities were quite low after bend testing at -1960 C(-3200 F) with
very little evidence of dislocation-precipitate or dislocation-grain boundary

interactions.

5. Auger electron emission spectroscopy, performed on freshly fractured surfaces,

revealed significant concentrations of silicon, potassium and fluorine at the grain

boundaries of specimens displaying a tendency toward low temperature inter-

granular fracture.

Aged T-1 1 1 Tube Specimens

6. The results of this program indicate thermal exposure at 1038 C (1900°F) causes

a greater sensitivity to subsequent' "hydrogen embrittlement effects" induced by

machining or cutting operations than exposure for long times at 1227°C (2240 0F).

With proper handling, material aged at both of these conditions displayed ductile

behavior to temperatures at least as low as -1500 C (-2380 F).

7. Despite HfO2 precipitates at grain boundaries, specimen 11, exposed to lithium

for 7500 hours at 10380°C (19000F), behaved in a ductile manner at -1500 C (-2380 F).

when normal precautions were taken in pre-test handling procedures.
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8. Except for the possibly high oxygen level in specimen 11, Auger electron

emission spectroscopy revealed no significant contamination had resulted from

the long-time exposures to lithium in the temperature range 10380 C(19000

to 1227°C(2240°F).

9. The presence of HfO
2

precipitation along grain boundaries, does not

necessarily imply premature integranular fracture at low temperatures.

10. Results of this study concur with those conducted at NASA Lewis with regard

to sensitivity of aged T- 11 to testing (and pre-test handling) environment.
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7.0 RECOMMENDATIONS

The conclusions indicate that the low temperature ductility of T-1 11 base metal and

weld metal is not adversely affected after long time thermal exposure in the temperature

range of 9820°C (18000F) through 13160°C (24000 F). However, it was indicated that T-1 11

aged at 10380°C (1900 0 F) is sensitive to post-age handling procedures which give rise to a

hydrogen embrittlement effect. To more precisely define the mechanism(s) by which this

apparent discontinuous phenomenon occurs, the following additional investigative work

is recommended:

· determine the kinetics and precise temperature or temperature range at which

T- 11 becomes sensitized to post-age handling.

· investigate the effects of other interstitial additions such as nitrogen, oxygen,

and carbon on the "sensitization" reaction.

· investigate the fracture mode and determine the temperature dependence of

fracture for "sensitized T- 11 under controlled environmental test conditions.
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